НЕФТЕЮГАНСКИЙ ИНДУСТРИАЛЬНЫЙ КОЛЛЕДЖ

(филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Югорский государственный университет»

Методические указания и контрольные задания

для обучающихся заочной формы обучения ПМ 01. Проведение буровых работ в соответствии с технологическим регламентом

МДК 01.01 Технология бурения нефтяных и газовых скважин Осуществление расчетов тепловых процессов нефтегазопромыслового оборудования

21.02.02 Бурение нефтяных и газовых скважин

Согласовано

Предметной (цикловой)

комиссией общепрофессиональных

дисциплин

Протокол № <u>5</u> от <u>10. 0 f</u> 2019г.

Председатель ПЦК

Сем О.С. Сагдатдинова

Утверждена

заседанием методсовета

протокол № 3 от / 7.0/ 2019г.

Председатель методсовета

Увееее Н.И. Савватеева

Методические указания и задания к контрольной работе по теме «Осуществление расчетов тепловых процессов нефтегазопромыслового оборудования» разработаны в соответствии с ФГОС по специальности среднего профессионального образования 21.02.02 Бурение нефтяных и газовых скважин.

Организация-разработчик: Нефтеюганский индустриальный колледж (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Югорский государственный университет».

Разработчик: Шумскис В.В. – преподаватель НИК (филиала) ФГБОУ ВО «ЮГУ».

Оглавление

1.	Пояснительная записка	∠
2.	Тематический план и содержание МДК 01.01 Технология бурения нефтя	ІНЫХ
И	газовых скважин Тема 2 «Осуществление расчетов тепловых проце	ссон
не	ефтегазопромыслового оборудования»	6
3.	Требования к выполнению и оформлению контрольной работы	8
4.	Вопросы для подготовки к экзамену	19
5.	Список рекомендуемой литературы	20
Ш	РИЛОЖЕНИЕ	2.1

1. Пояснительная записка

Методические указания и контрольные задания разработаны на основании рабочей программы профессионального модуля ПМ 01 Проведение буровых работ в соответствии с технологическим регламентом МДК 01.01 Технология бурения нефтяных и газовых скважин

Изучение материала базируется на знаниях, полученных при изучении физики, технической механики, геологии и темы «Выполнение гидравлических расчетов трубопроводов» МДК 02.01 Эксплуатация бурового оборудования ПМ.02 Обслуживание и эксплуатация бурового оборудования.

Предусматривается изучение основ термодинамики, теории передачи теплоты, принципов действия и конструкции различных теплосиловых установок, используемых на нефтебазах, нефтеперекачивающих и компрессорных станциях магистральных трубопроводов, а также элементов их расчета.

В результате освоения темы обучающийся должен:

уметь:

 производить расчеты требуемых физических величин в соответствии с законами и уравнениями термодинамики и теплопередачи.

знать:

- основные понятия, законы и процессы термодинамики и теплопередачи;
- методы расчета термодинамических и тепловых процессов;
- классификацию, особенности конструкции, действия и эксплуатацию котельных установок, поршневых двигателей внутреннего сгорания, газотурбинных и теплосиловых установок.

В результате освоения МДК 01.01 Технология бурения нефтяных и газовых скважин обучающийся должен овладеть общими и профессиональными компетенциями, включающими в себя способность:

- OК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- OK 5. Использовать информационно-коммуникационные технологии и профессиональной деятельности.
- ОК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды, за результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
- ПК1.1 Выбирать оптимальный вариант проводки глубоких и сверхглубоких скважин в различных горно-геологических условиях;
 - ПК 1.2 Выбирать способы и средства контроля технологических процессов бурения;
- ПК 1.3 Решать технические задачи по предотвращению и ликвидации осложнений и аварийных ситуаций;
- ПК 1.4 Проводить работы по подготовке скважин к ремонту; осуществлять подземный ремонт скважин.

Изучение темы рассчитано на 120 часов, в том числе 48 часов отведено на выполнение практических работ и 40 часов на внеаудиторную самостоятельную работу.

Для заочной формы обучения предусмотрено проведение **16 часов** аудиторных занятий, в том числе 8 часов отведено на выполнение практических работ, на самостоятельное изучение отводится 104 часа.

Учебным планом предусмотрено выполнение 1 контрольной работы.

Итоговой формой контроля является экзамен.

2. Тематический план и содержание МДК 01.01 Технология бурения нефтяных и газовых скважин Тема 2 «Осуществление расчетов тепловых процессов нефтегазопромыслового оборудования»

Тема 2. Осуществление расчетов тепловых процессов нефтегазопромыслового оборудования	120	
Тема 2.1. Законы и уравнения термодинамики		
Термодинамическая система. Законы идеальных газов	2	1
Смеси жидкостей, паров и газов. Теплоемкость вещества	2	1
Первое и второе начало термодинамики. Термодинамические процессы изменения состояния	2	1
Процессы парообразования. Истечение и дросселирование газов и паров	2	1
Термодинамические процессы компрессорных машин, паросиловых установок и поршневых двигателей внутреннего	2	1
сгорания		
Практическая работа № 2.1.1 Газовые процессы и газовые законы	6	2
Практическая работа №2.1. 2 Расчет газовой смеси и их теплоемкости	6	2
Практическая работа №2.1.3 Определение параметров водяного пара по таблицам и диаграммам	4	2
Практическая работа №2.1. 4 Расчет циклов ДВС	6	2
Самостоятельная работа № 2.1.1 Графическое изображение структуры текста лекций	2	2
Самостоятельная работа №2. 1.2 Решение индивидуальных графических задач	4	2
Самостоятельная работа №2. 1.3 Решение индивидуальных задач на расчет паросиловой установки	4	2
Самостоятельная работа №2.1. 4 Составление теста по пройденной теме	2	2
Тема 2.2. Законы и уравнения теплопередачи		
Формы передачи теплоты. Теплообмен теплопроводностью, конвекцией и излучением	4	1
Назначение и виды теплообменных аппаратов	2	1
Практическая работа №2. 2.1 Расчет теплопроводности через однослойную и многослойную стенки	2	2
Практическая работа №2. 2.2 Расчет теплообмена конвекцией и излучением	4	2
Практическая работа № 2.2.3 Тепловой расчет теплообменных аппаратов	4	2
Самостоятельная работа № 2. 2.1 Подготовка сообщений по теме "Теплообменные аппараты в НиГП"	4	2
Тема 2.3. Особенности конструкции и эксплуатации теплотехники		
Топливо, продукты сгорания	2	1
Топки и топочные устройства	2	1
Котельные установки	2	1
Поршневые двигатели внутреннего сгорания: назначение, виды, эксплуатация	2	1
Газотурбинные установки: классификация, особенности конструкции и эксплуатация	2	1
Теплосиловые установки: виды, преимущества и недостатки	2	1
Тест по разделу	4	
Практическая работа № 2. 3.1Расчет топлива и процесса горения	4	2
Практическая работа № 2.3.2 Расчет топок	2	

Практическая работа № 2.3.3 Тепловой расчет ДВС	4	2
Практическая работа № 2. 3.4 Расчет циклов ГТУ	6	2
Самостоятельная работа № 2.3.1 Составление таблицы «Классификация топлива»	2	2
Самостоятельная работа № 2.3.2 Графическое изображение основных элементов городской котельной №2	4	2
Самостоятельная работа № 2.3.3 Подготовка сообщений по теме "Поршневые ДВС и ГТУ в НиГП"	6	2
Самостоятельная работа № 2.3.4 Выполнение творческих заданий: фотографий, презентаций, фильмов	8	2
Самостоятельная работа № 2.3.5 Подготовка к итоговому экзамену	4	

3. Требования к выполнению и оформлению контрольной работы

- 1. Обучающийся, для освоения требуемых знаний и умений по изучаемой теме, перед выполнением контрольной работы должен изучить учебный материал, указанный в тематическом плане.
- 2. Контрольная работа должна быть правильно оформлена: на обложке тетради указывается тема, по которой выполняется контрольная работа, междисциплинарный курс (МДК) и профессиональный модуль (ПМ), номер варианта, ФИО обучающегося и преподавателя.
- 3. В тетради необходимо оставлять поля шириной 3 4 см, в конце 1-2 страницы для рецензии.
- 4. Контрольная работа должна быть написана грамотно (без стилистических и грамматических ошибок), а также не должно быть ошибок по существу предмета.
- 5. Задания контрольной работы необходимо переписывать полностью, отвечать конкретно и только на поставленный вопрос. При необходимости записи сопровождать схемами, рисунками, таблицами. Записи выполняются пастой черного или синего (фиолетового) цвета, четко и разборчиво.

6. Перед решением задачи необходимо письменно ответить на вопросы, предшествующие задаче.

- 7. Выполнение каждого действия должно быть прокомментировано. При расчетах следует записать формулу, а только затем числовые вычисления. Выполнение расчетов и их запись должны носить последовательный характер. Не допускается подставлять в формулу значения какой-либо величины, а ниже производить вычисления этого числа. Каждое задание начинать с новой страницы.
- 8. Графическая часть контрольной работы выполняется аккуратно, с использованием чертежных инструментов. Все рисунки и схемы должны быть пронумерованы в порядке их расположения. По тексту при оформлении каждой из задач необходимо делать ссылку на номер рисунка или схемы. На рисунках (схемах) необходимо нанести известные и искомые параметры.

При оформлении заданий контрольной работы должна соблюдаться следующая последовательность (каждый пункт выполняется с красной строки):

- задание контрольной работы;
- исходные данные для решения задачи (единицы измерения перевести в систему СИ);
- рисунок (схема);
- по центру строки слово «Решение», ниже изложение хода решения задачи с пояснениями;
- ответ.
- 9. Отвечать на теоретические вопросы контрольной работы необходимо коротко и по существу.
- 10. В конце контрольной работы указывается перечень литературы, которой обучающийся пользовался при выполнении контрольной работы (фамилия автора, название книги, название издательства и год издания).
- 11. При возврате контрольной работы обучающийся должен внимательно прочитать рецензию преподавателя, выполнить все его рекомендации и советы. Исправления необходимо выполнить в той же тетради и сдать контрольную работу повторно.
- 12. Контрольная работа должны быть предоставлена в учебную часть в срок, указанный в учебном графике.
- 13. Выполненные контрольные работы оцениваются оценкой «зачтено» или «не зачтено». Контрольные работы, выполненные небрежно, не по-своему варианту возвращаются обучающемуся без проверки.
- 14. Обучающиеся, не выполнившие контрольную работу, к экзамену не допускаются.

- 15. Каждым вариантом предусматривается письменные ответы на два теоретических вопроса и решение трех задач.
- 16. Контрольная работа рассчитана на 30 вариантов. Индивидуальный вариант для выполнения работы соответствует порядковому номеру списочного состава обучающегося в журнале.
- 17. Номера теоретических вопросов контрольной работы помещены в таблицу. В первом вертикальном столбце таблицы необходимо найти цифру, соответствующую предпоследней цифре варианта обучающегося, в горизонтальном последнюю цифру варианта и на пересечении строк, соответствующих этим цифрам, находятся номера вопросов, на которые необходимо письменно ответить.
- 18. По всем неясным вопросам, которые возникают в процессе изучения материала и выполнения контрольной работы, следует обратиться к преподавателю за консультацией.

Задания контрольной работы

Номера вопросов теоретической части контрольной работы

					Послед	ид ккн	фра вари	анта		
Предпоследняя цифра варианта	1	2	3	4	5	6	7	8	9	10 20 30
0	1	2	3	4	11	6	7	8	19	18
U	30	59	58	57	56	55	54	53	52	51
1	5	21	13	14	15	16	17	10	9	20
1	50	49	48	47	46	45	44	43	42	41
2	12	22	23	24	25	26	27	28	29	30
2	40	39	38	37	36	35	34	33	32	31

Теоретические вопросы

- 1. История развития термодинамики как науки.
- 2. Раскрыть понятия об энергии, теплоте, работе.
- 3. Дать понятие термодинамической системе.
- 4. Основные параметры состояния термодинамической системы.
- 5. Основные законы идеальных газов: законы Бойля-Мариотта, Гей-Люссака.
- 6. Основные законы идеальных газов: Шарля, Авогадро.
- 7. Понятие о термодинамическом процессе.
- 8. Понятие о внутренней энергии, энтальпии, работе, совершаемой газом в термодинамическом процессе.
- 9. Теплоемкость газов: истинная и средняя, зависимость теплоемкости от температуры и характера процесса.
- 10. Понятие об изохорном процессе, изображение его в P-V, P-T, координатах.
- 11. Понятие об изобарном процессе, изображение его в P-V, P-T, координатах.
- 12. Понятие об изотермическом процессе, изображение его в P-V, P-T, координатах.
- 13. Понятие об адиабатном процессе, изображение его в P-V, P-T, координатах.
- 14. Основные положения о II законе термодинамики, понятие об энтропии;
- 15. Понятие о круговом процессе. Обратимый, необратимый круговые процессы.
- 16. Идеальный цикл и диаграмма теплового двигателя, термический к.п.д;
- 17. Идеальный цикл и диаграмма холодильной машины, к.п.д. холодильной машины.
- 18. Процессы парообразования в P-V, P-Т координатах.
- 19. Теплота парообразования и теплоемкость перегретого пара.
- 20. Влажный воздух и параметры его состояния.
- 21. Цикл Ренкина.
- 22. Сопла, как преобразователи потенциальной энергии газа в кинетическую энергию потока.
- 23. Понятие о дросселировании газов и паров.
- 24. Теплообмен теплопроводностью через плоскую стенку.
- 25. Теплообмен теплопроводностью через цилиндрическую стенку.
- 26. Теплообмен излучением между телами.
- 27. Тепловое излучение газов.
- 28. Конвективный теплообмен.

- 29. Сложный теплообмен.
- 30. Тепловая изоляция.
- 31. Типы теплообменных аппаратов.
- 32. Классификация топлива.
- 33. Сущность процесса горения топлива, полное горение, неполное.
- 34. Теплота сгорания топлива. «Условное» топливо.
- 35. Состав топлива и его характеристики.
- 36. Котельная установка: основные элементы и классификация.
- 37. Тепловой баланс котельной установки.
- 38. Котельные агрегаты: определение, виды.
- 39. Классификация топочных устройств.
- 40. Вертикальный котел системы В.Г. Шухова.
- 41. Прямоточный котел Л.Д. Рамзина.
- 42. Классификация горелок.
- 43. Пароперегреватели: назначение, схемы подключения.
- 44. Водяные экономайзеры: назначение, виды.
- 45. Паровая турбина активного действия.
- 46. Паровая турбина реактивного действия.
- 47. Теоретический цикл двигателя внутреннего сгорания с изохорным подводом и отводом теплоты (цикл Отто).
- 48. Теоретический цикл двигателя внутреннего сгорания с изобарным подводом и изохорным отводом теплоты (цикл Дизеля).
- 49. Теоретический цикл двигателя внутреннего сгорания со смешанным подводом и изохорным отводом теплоты (цикл Тринклера).
- 50. Требования, предъявляемые к смазочным маслам и топливу.
- 51. Классификация теплосиловых установок.
- 52. Понятие о детонации и октановом числе топлива.
- 53. Принцип действия 2-х тактного двигателя внутреннего сгорания.
- 54. Принцип действия 4-х тактного двигателя внутреннего сгорания.
- 55. Принцип работы одноступенчатого поршневого компрессора.
- 56. Понятие о теплообменном аппарате, классификация теплообменных аппаратов.
- 57. Понятие о газотурбинной установке.
- 58. Способы повышения мощности и к.п.д. поршневых двигателей внутреннего сгорания.
- 59. Сопло Лаваля: устройство и принцип работы.

Практические задачи

Задача 1

Вопросы к задаче 1.

- 1. Что такое массовая доля компонента смеси?
- 2. Что такое мольная доля компонента смеси?
- 3. Что такое удельный объем?
- 4. Что такое парциальное давление компонента смеси?
- 5. Какие условия состояния газа называют нормальными?
- 6. Что такое газовая постоянная? Что такое универсальная газовая постоянная?

В резервуаре емкостью V находится смесь газов при давлении P_1 и температуре $t_1^{\, o}$ С. Определить первоначальные объемные, массовые доли компонентов, составляющих смесь; плотность и удельный объем смеси; газовую постоянную смеси и парциальные давления компонентов.

Исходные данные к задаче 1

Предпос	e 61	I X										
ледняя цифра варианта	Исходные параметры	Единицы измерения	1	2	3	4	5	6	7	8	9	10 20 30
	И	газ	O_2	CH ₄	NH ₃	CO	NH ₃	H ₂ O	CO_2	N_2	H_2	CH ₄
	[ec]	\mathbf{M}^3	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	1
	C	газ	H_2O	O_2	CH_4	N_2	CO	NH_3	H_2	H_2O	CO_2	N_2
0	Состав смеси	ΚΓ	10	10,5	11	11,5	12	12,5	13	13,5	14	15
U		газ	CO_2	N_2	O_2	CH_4	H_2	CH_4	NH_3	CO	NH_3	H_2O
)	\mathbf{M}^3	1,4	1,3	1,2	1,1	1	0,9	0,8	0,7	0,6	0,5
	P_1	МПа	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
	t_1	°C	10	11	12	13	14	15	16	17	18	19
	И	газ	H_2O	CO_2	NH_3	CO	H_2	CH_4	CO_2	CH_4	N_2	O_2
	чес	ΚΓ	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5
	S CI	газ	CO_2	O_2	CO	H_2	NH_3	NH_3	CH_4	N_2	O_2	H_2O
1	Состав смеси	м ³	3	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
_	၁၀င	газ	CH_4	CO	H_2	NH_3	$\mathrm{CH_{4}}$	H_2O	N_2	O_2	H_2O	CO_2
	_	КГ	7,5	8	8,5	9	9,5	10	10,5	11	11,5	12
	P_1	атм	10	9,5	9	8,5	8	7,5	7	6,5	6	6,5
	t_1	°C	13	16	15	17	18	20	21	23	25	24
	И	газ	CH_4	N_2	NH_3	CO_2	H_2O	O_2	H_2O	CO_2	NH_3	CH_4
	Состав смеси	м ³	1,15	1,25	1,35	1,45	1,55	1,65	1,75	1,85	1,95	2
	S CI	газ	N_2	NH_3	CO_2	H_2O	CO	H_2O	CO_2	NH_3	CO_2	H_2
2	тағ	КГ	10	10,5	11	11,5	12	12,5	13	13,5	14	15
	Ç00	газ	NH_3	CO_2	H_2O	CH_4	O_2	CO_2	NH_3	CO	CH_4	N_2
		КГ	1 4	1 3	1 2	1 1	10	9	8	7	6	5
	P_1	кПа	150	200	300	400	500	600	700	800	900	100
	t_1	°C	10	17	12	13	19	25	26	17	18	19

Алгоритм решения задачи

1. Производим расчет плотности на конкретные температуру T_1 и давление P_1 по формуле:

$$\rho_{i} = \rho_{i(n.y.)} \frac{P_{1} \cdot T_{n.y.}}{P_{n.y.} \cdot T_{1}}$$
(1)

- 2. Находим плотность смеси через плотности и объемные доли компонентов (см. Приложение Таблица1).
- 3. Производим расчет параметров газовой смеси используя формулы из таблицы расчета газовых смесей (см. Приложение Таблица 2)
- 4. По результатам расчетов записываем ответ.

Задача 2

Вопросы к задаче 2

- 1. Что такое тепловой поток?
- 2. Сформулируйте закон Фурье для однослойной стенки
- 3. Что такое термическое сопротивление?
- 4. Что такое эквивалентный коэффициент теплопроводности и для чего он применяется?
- 5. Как рассчитывается средняя площадь поверхности теплообмена для плоской, цилиндрической и сферической стенок?

При нагнетании водяного пара в нефтяной пласт для повышения нефтеотдачи наружная поверхность насосно-компрессорных труб (НКТ) изолируется асбестовой бумагой. Определить температуру наружной поверхности изоляции T_3 и на границе слоев стенки T_2 (см рис. 1), если размеры НКТ и коэффициент теплопроводности материала труб: $d_1,\ d_2,\ \lambda_1$; толщина слоя и коэффициент теплопроводности асбестовой бумаги соответственно $\delta_2,\ \lambda_2$; температура внутренней поверхности НКТ T_1 ; плотность удельного теплового потока q. Длину участка труб принять 1 метр.

Исходные данные к задаче 2

Предпо-	ie bi	I.8]	Послед	няя ци	фра вар	ианта			
следняя цифра варианта	Исходные параметры	Единицы	1	2	3	4	5	6	7	8	9	10 20 30
	d_1	MM	27	33	42	48	60	73	73	89	102	114
	d_2	MM	33	40	49	56	70	87	86	105	115	128
	$\lambda_{_{1}}$	$\frac{Bm}{\mathcal{M} \cdot C}$	27	28	29	30	31	32	33	34	35	36
0	$\delta_{\scriptscriptstyle 2}$	MM	1,5	1,55	1,6	1,65	1,65	1,7	1,75	1,5	1,8	1,85
	λ_2	$\frac{Bm}{\mathcal{M} \cdot C}$	0,106	0,109	0,11	0,11	0,11	0,12	0,12	0,12	0,13	0,13
	T_1	°C	416	413	410	407	404	401	398	395	392	389

Продда	e 5	_ ¤				Послед	няя ци	фра вар	ианта			
Предпо- следняя цифра варианта	Исходные параметры	Единицы измерения	1	2	3	4	5	6	7	8	9	10 20 30
	q	B_T/M^2	9360	9260	9170	9080	8990	8900	8810	8720	8600	8550
	d_1	MM	73	27	27	33	33	42	48	52	60	73
	d_2	MM	84	32,72	34,8	39,7	42,1	48,3	58,1	67,2	72,9	87,0
	λ_1	$\frac{Bm}{M \cdot C}$	37	38	39	40	41	42	43	44	45	46
1	δ_2	MM	1,9	1,3	1,35	1,4	1,45	1,5	1,55	1,6	1,65	1,3
	λ_2	$\frac{Bm}{M \cdot C}$	0,13	0,13	0,14	0,14	0,14	0,15	0,15	0,15	0,16	0,16
	T_1	°C	385	382	379	376	373	370	367	364	361	358
	q	BT/M^2	8460	8400	8300	8200	8130	8050	7950	7890	7810	7730
	d_1	MM	89	102	42	48	52	60	73	89	102	114
	d_2	MM	103, 6	118,7	49,1	63,2	60,4	77,0	92,9	108,0	123,0	135,8
	$\lambda_{_{1}}$	$\frac{Bm}{M \cdot C}$	47	48	49	50	37	43	46	42	47	49
2	δ_2	MM	2	1,9	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9
	λ_2	$\frac{Bm}{\mathcal{M} \cdot C}$	0,16	0,17	0,17	0,17	0,17	0,18	0,18	0,18	0,19	0,21
	T_1	°C	355	352	349	346	343	340	337	334	331	329
	q	B_T/M^2	7650	7580	7500	7400	7350	7280	7200	7130	7060	6990

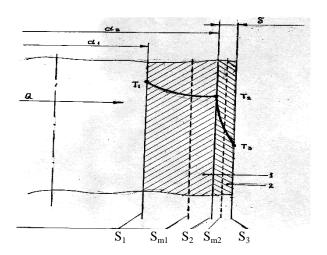


рис. 1. Границы слоев НКТ и изоляции

Алгоритм решения задачи

- $^{1.}$ Находим среднее значение площади стенки НКТ (с учетом того что стенка цилиндрическая) $S_{\scriptscriptstyle m1}$;
- 2. Находим среднее значение площади изоляции (с учетом того, что стенка цилиндрическая) S_{m2} ;

- 3. Находим среднее значение площади условной стенки (с учетом того, что стенка цилиндрическая) S_m .
- 4. Находим общее термическое сопротивление стенки:

$$R = R_1 + R_2 = \frac{\delta_1}{\lambda_1 S_{m1}} + \frac{\delta_2}{\lambda_2 S_{m2}}$$

5. Находим эквивалентный коэффициент теплопроводности условной стенки:

$$\lambda_{9} = \frac{\delta}{S_{...}R}$$
, BT/M · C

6. Определяем температуру на наружной поверхности изоляции:

$$T_3=T_1-q\frac{\delta}{\lambda_a}$$
, K

7. Определяем температуру на наружной поверхности НКТ:

$$\mathsf{T_2=T_{1^-}} \frac{\mathcal{S}_{_1}}{\lambda_{_1}} \cdot \frac{S_{_m}}{S_{_{m1}}} q$$
 , K

8. По результатам расчетов записываем ответ.

Задача 3

Вопросы к задаче 3

- 1. Что называется теплопроводностью, конвекцией, лучистым теплообменом?
- 2. В чём измеряется коэффициент теплопередачи?
- 3. Какие бывают теплообменные аппараты по конструкции?
- 4. Сущность конструктивного расчета ТА

Определить потребную поверхность рекуперативного (выполнить конструктивный расчет) ТА, в котором холодная вода расходом М нагревается горячими газами, $t_1^{'}$, $t_2^{'}$ - температура горячего и холодного теплоносителя на входе; $t_1^{''}$, $t_2^{''}$ - температура горячего и холодного теплоносителя на выходе, $C_{pm} = \frac{\kappa \not \square \mathcal{H}}{\kappa z \cdot {}^0 C}$. Построить температурную диаграмму (в масштабе) для прямотока и противотока.

№ варианта	$t_1^{'}, {}^0C$	$t_1^{"}$, 0 C	t'_2, °C	$t_2^{"}$, 0 C	$M, \frac{\kappa c}{c}$	$K, \frac{\mathcal{J} \mathcal{K}}{M^2 \cdot {}^0 C}$
1	300	150	10	70	0,5	30
2	310	160	15	80	0,6	32
3	320	150	5	100	0,7	34
4	330	140	20	90	0,8	36
5	340	150	10	90	0,9	38
6	360	100	10	70	1,0	40
7	370	110	15	85	1,1	42
8	400	150	20	90	1,2	44
9	450	300	10	110	1,3	42

№ варианта	$t_1^{'}, {}^0C$	$t_1^{"}$, 0 C	$t_2^{'}$, 0 C	$t_2^{"}$, 0 C	$M, \frac{\kappa c}{c}$	$K, \frac{\mathcal{J}\mathcal{H}}{\mathcal{M}^2 \cdot {}^0 C}$
10	425	180	10	140	1,4	40
11	450	170	10	130	1,5	38
12	400	100	10	80	1,6	36
13	450	200	10	150	1,7	34
14	400	200	10	100	1,8	32
15	450	200	20	180	1,9	30
16	500	200	40	150	2,0	28
17	525	250	20	200	2,1	30
18	500	200	20	150	2,2	32
19	400	150	50	100	2,3	34
20	350	150	50	100	2,4	36
21	250	100	50	80	2,5	38
22	200	100	20	80	2,6	40
23	300	150	50	100	2,7	42
24	350	200	50	150	2,8	44
25	400	250	50	190	2,9	46
26	450	250	100	150	2,8	48
27	500	300	150	200	2,7	46
28	550	250	50	150	2,6	44
29	500	300	100	250	2,5	42
30	450	300	50	150	2,4	40

Алгоритм решения задачи

Решение начать с записи уравнения теплового баланса ТА, с учетом того что выполняется конструктивный расчет (I рода) – количество теплоты, отдаваемое греющим теплоносителем равно количеству теплоты получаемому подогреваемым теплоносителем:

$$KS\Delta \bar{t} = MC_{nm} \cdot \Delta t_2$$

К – коэффициент теплопередачи,

S – потребная поверхность теплообмена,

 $\Delta ar{t}$ - средняя разность температур теплоносителей

$$\Delta \bar{t} = \frac{\Delta t_{ex} - \Delta t_{eblx}}{\ell n \frac{\Delta t_{ex}}{\Delta t_{eblx}}},$$

где $\Delta t_{\rm ex}$; $\Delta t_{\rm esax}$ – начальная и конечная разность температур теплоносителей

$$\Delta t_{ex} = \theta + \frac{1}{2}\Delta T$$
, $\Delta t_{ebx} = \theta - \frac{1}{2}\Delta T$;

 $\theta = 0.5(t_1 + t_1) - 0.5(t_2 + t_2)$ -среднеарифметическая разность температур горячего и холодного теплоносителей

 $\Delta T = \sqrt{(\Delta t_1 + \Delta t_2)^2 - 4p\Delta t_1\Delta t_2}$ -характеристическая разность температур, определяемая с учетом индекса противоточности **р** (для прямотока p=0, для противотока p=1, для остальных случаев рассчитывается отдельно или берется из справочных таблиц)

М – количество холодного теплоносителя в единицах массы;

 C_{pm} — изобарная теплоёмкость холодного теплоносителя (в данной задаче принять постоянной 4,2 $\frac{\kappa \cancel{\mathcal{J}} \cancel{\mathscr{H}}}{\kappa 2 \cdot {}^0 C}$;

 $\Delta t_1 = t_1^{''} - t_1^{''}, \Delta t_2 = t_2^{''} - t_2^{'}$ -изменение температуры горячего и холодного теплоносителей

Решить задачу для случая прямотока и противотока.

Обязательно построить график изменения температуры теплоносителей для обоих рассматриваемых случаев (в выбранном Вами масштабе)

Рекомендуемая литература: ОИ1, ДИ1.

Задача 4

Вопросы к задаче 4

- 1. Что такое рабочая, сухая и горючая массы топлива?
- 2. Что такое высшая и низшая удельная теплота сгорания топлива?
- 3. Что такое теоретический и действительный расход воздуха, необходимого для сжигания топлива?
- 4. Что такое условное топливо и топливный эквивалент?
- 5. Запишите формулы для расчета низшей удельной теплоты сгорания жидкого и газообразного органического топлива.

Определить низшую теплоту сгорания рабочей массы топлива следующего элементарного состава, топливный эквивалент заданного рабочего топлива, теоретический и действительный расход воздуха, необходимого для сжигания топлива.

Исходные данные к задаче 4

Вар-т	C^r	H ^c	S ^r	N ^c	A ^c	\mathbf{W}^{p}	Or	C°	H ^r	S ^c	N ^r	A ^p	\mathbf{W}^{p}
1	28,3099	31	40	0,5	0,6	0,2	0						
2	66	20,174	13	0,7	0,6	20	0						
3							0,5	1	32,695	31	20	31	2
4							20	1,6	21	23,8789	15	41	2,6
5	30	38	10	11	2	3	10						
6	1	18,52	40	18	17	6	15						
7							28	31	35,203	1	3	5	6
8							35	25	15	22,99	1	2	3
9	23	2,47	25	26	27	1	13						
10	32	17,2	34	2	4	5	14						
11							28	31,62	13	6	8	21	20
12							30	28,11	15	6	7	22	24
13	63,41	20	10	5	6	8	0						
14	58,95	10	5	10	5	10	15						
15							30	10	40	14,75	5	1	3
16							10	15	38,74	25	10	3	2
17	20	51,75	5	10	5	10	10						

Вар-т	C^r	H ^c	S ^r	N°	A ^c	\mathbf{W}^{p}	Or	C°	H ^r	S ^c	N ^r	A^p	\mathbf{W}^{p}
18	30	44,5	10	5	10	5	5						
19							30	50,44	4	5	6	7	8
20							16,4	6	24	15	26	27	28
21	30	43,9	5	10	2	3	10						
22	23	28,04	25	6	8	10	15						
23							19	6,34	17	16	31	32	1
24							28	37,75	30	1	2	3	4
25	15	22,6	17	18	30	5	10						
26	16	17	8	24,48	32	6	15						
27							33	23,89	8	10	15	20	13
28							28	39,09	16	10	5	3	20
29	25	30	16	20	11	10	10						
30	30	1	2	5	10	15	15						

Алгоритм решения задачи

1. Для пересчета состава топлива с горючей массы на рабочую определяем коэффициент пересчета $K_r = \frac{100 - (A^p + W^p)}{100};$

для пересчета сухой массы на рабочую коэффициент пересчета определяется по формуле

$$K_c = \frac{(100 - W^p)}{100};$$

2. Пересчитать состав топлива с горючей (сухой) массы на рабочую (умножить на поправочный коэффициент $K_r(K_c)$

Для проверки точности вычислений состава рабочего топлива применить формулу:

$$C^{p} + H^{p} + N^{p} + O^{p} + S^{p} + A^{p} + W^{p} = 100\%$$

3. Определить низшую теплоту сгорания на рабочую массу топлива по формуле:

$$Q_u^p = 338C^p + 1025H^p - 108.5(O^p - S^p) - 25W^p$$
 кДж/кг

4. Определить топливный эквивалент топлива

$$\ni = \frac{Q_{\scriptscriptstyle H}^{\,p}}{29300}$$

5. Определить теоретический расход воздуха, необходимый для сжигания топлива:

$$V_T = 0.0899C^p + 0.267H^p + 0.033(S^p - O^p)$$

6. Определить действительный расход воздуха

$$V_{g} = \alpha V_{T}$$

Рекомендуемая литература: ОИ1, ДИ1.

4. Вопросы для подготовки к экзамену

Теоретические вопросы

- 1. Уравнение состояния реального газа.
- 2. Основные газовые процессы и газовые законы.
- 3. Газовые смеси: примеры и способы задания.
- 4. Расчет теплообменных аппаратов: конструктивный и поверочный.
- 5. Основные законы теплопередачи: теплопроводность, конвекция и лучистый теплообмен.
- 6. Основное и вспомогательное оборудование котельных установок.
- 7. Двигатели внутреннего сгорания: классификация, принцип действия, применение в нефтяной и газовой промышленности.
- 8. Газотурбинные установки: назначение, классификация и область применения.
- 9. Тепловые установки: классификация, преимущества и недостатки.

Практические задания для подготовки к экзамену

- 1. Рассчитать параметры газовой смеси, если задан ее объемный или массовый состав.
- 2. Построить температурную диаграмму прямотока или противотока для теплообменного аппарата и определить площадь его поверхности по исходным данным.
- 3. Расшифровать марку двигателя внутреннего сгорания.

5. Список рекомендуемой литературы

Основные источники

1. Основы гидравлики, теплотехники и аэродинамики: учебник / О.Н. Брюханов, В.И. Коробко, А.Т. Мелик-Аракелян. – М.: ИНФРА-М, 2017. – 254 с.– Режим доступа: http://znanium.com/catalog/product/559349 (ЭБС Znanium)

Дополнительные источники

2. Гидравлика, пневматика и термодинамика : курс лекций / под общ. ред. В.М. Филина. – М.: ИД «ФОРУМ»: ИНФРА-М, 2018. – 318 с. – Режим доступа: http://znanium.com/catalog/product/957143 (ЭБС Znanium)

Интернет ресурсы

- 1. И-P 1 http://mosgruz.net
- 2. И-P 2 http://gidravl.com
- 3. И-P 3 http://stringer46.narod.ru/
- 4. И-Р 4 http://works.tarefer.ru/81/100019/index.html
- 5. И-P 5 http://znanium.com(ЭБСZnanium)
- 6. И-Р 6 http://e.lanbook.com(ЭБС Лань)

приложение

Основные параметры газов

Таблица 1

Название газа	Хим. формула	Молекулярная масса, µ	Плотность <i>р</i> , кг/м ³	Газовая постоянная R, Дж/(кг·К)
Воздух		28,96	1,293	287,0
Кислород	O2	32,00	1,429	259,8
Азот	N_2	28.026	1.251	296.8
Атмосферный азот	N_2	28,16	(1,257)	(295,3)
Гелий	H_{e}	4,003	0,179	2078,0
Аргон	Ar	39,994	1,783	208,2
Водород	H_2	2,016	0,090	4124,0
Окись углерода	CO	28,01	1,250	296,8
Двуокись углерода	CO_2	44,01	1,977	188,9
Сернистый газ	SO_2	64,06	2,926	129,8
Метан	CH ₄	16,032	0,717	518,8
Этилен	C_2H_4	28,052	1,251	296,6
Коксовый газ		11,50	0,515	721,0
Аммиак	NH ₃	17,032	0,771	488,3
Водяной пар	H ₂ O	18,016	(0,804)	(461)

Таблица для расчета газовых смесей

Таблица 2

Доля	Перевод в другую долю	Плотность, $ ho_{\scriptscriptstyle {\it CM}}$ Удельный объём смеси $ ho_{\scriptscriptstyle {\it CM}}$	Молекулярная масса смеси, $\mu_{\scriptscriptstyle {\it CM}}$	$R_{\scriptscriptstyle {\it CM}}; rac{{\cal L} lpha c}{\kappa z \cdot \kappa}$	$P_i;\Pi a$
Массовая	$r_i = \frac{\frac{g_i}{\mu_i}}{\sum \frac{g_i}{\mu_i}}$	$\rho_{cM} = \frac{1}{\sum \frac{g_i}{\rho_i}}$ $v_{cM} = \sum \frac{g_i}{\rho_i}$	$\mu_{\scriptscriptstyle CM} = \frac{1}{\sum \frac{g_i}{\mu_i}}$	$R_{\scriptscriptstyle CM} = \sum g_i \cdot R_i$	$P_i = g_i \frac{R_i}{R_{cM}} P_{cM}$
Объёмная	$g_i = \frac{r_i \cdot \mu}{\sum r_i \cdot \mu}$	$\rho_{\scriptscriptstyle CM} = \sum r_i \cdot \rho_i$ $\nu_{\scriptscriptstyle CM} = \frac{1}{\sum r_i \cdot \rho_i}$	$\mu_{\scriptscriptstyle extstyle \mathcal{L}_{\scriptscriptstyle extstyle \mathcal{L}}} = \sum r_i \cdot \mu_i$	$R_{\scriptscriptstyle CM} = \frac{8314}{\sum r_i \cdot \mu_i}$	$P_{i} = P_{_{CM}} \cdot r_{_{i}}$